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Abstract—Quantum codes excel at correcting local noise but
fail to correct leakage faults that excite qubits to states outside
the computational space. Aliferis and Terhal have shown that
an accuracy threshold exists for leakage faults using gadgets
called leakage reduction units (LRUs). However, these gadgets
reduce the threshold and increase experimental complexity, and
the costs have not been thoroughly understood. We explore a
variety of techniques for leakage resilience in topological codes.
Our contributions are threefold. First, we develop a leakage model
that is physically motivated and efficient to simulate. Second, we
use Monte-Carlo simulations to survey several syndrome extrac-
tion circuits. Third, given the capability to perform 3-outcome
measurements, we present a dramatically improved syndrome
processing algorithm. Our simulations show that simple circuits
with one extra CNOT per qubit reduce the accuracy threshold
by less than a factor of 4 when leakage and depolarizing noise
rates are comparable compared to a scenario without leakage.
This becomes a factor of 2 when the decoder uses 3-outcome
measurements. Finally, we make the surprising observation that
for physical error rates less than 2× 10−4, placing LRUs after
every gate may achieve the lowest logical error rate. We expect
that the ideas may generalize to other topological codes.

I. INTRODUCTION

Large-scale quantum computers require a fault-tolerant
architecture based on quantum error-correcting codes. Topo-
logical error-correcting codes [1], [2] stand out due to their
favorable properties such as local check operators, simple
syndrome extraction circuits [3], and flexible fault-tolerant
logic based on transversal gates, code deformation [4], [5], or
lattice surgery [6]. These properties endow topological codes
with a high accuracy threshold, estimates of which vary from
0.67% [7] to above 1% [8].

These threshold estimates assume a depolarizing noise
model that approximates realistic noise. However, the model
does not include so-called leakage faults that map quantum
states out of the 2-dimensional qubit subspace and into a
higher-dimensional Hilbert space, a behavior exhibited by
many physical realizations of qubits. Leakage errors can be
mitigated by constructing special quantum circuits that convert
leakage errors into “regular” errors and may or may not simul-
taneously raise a flag to indicate the location of the leakage
error. Gadgets that detect leakage convert it into a located loss
error that is easier to correct [9]–[11]. Leakage reduction units
(LRUs) convert leakage errors into regular errors but do not
give an indication that leakage has occurred [12], [13]. Leakage
mitigation with LRUs was rigorously analyzed by Aliferis and
Terhal [12], who showed existence of a threshold to leakage in
concatenated codes. Subsequent work has shown that circuits
can be further simplified while remaining fault-tolerant [14].

Most prior studies of quantum codes do not consider
errors due to leakage, and the the impact of leakage on the
performance of error-correcting codes has not been thoroughly
understood, particularly in the surface code. Topological codes
are known to have a 50% threshold to idealized erasure
errors [15], [16]. However, this idealized model is far from
realistic. Moreover, the erasure correction strategy [15], [17]
measures check operators that each act over a relatively large
neighborhood, and this is challenging to do with a fixed planar
array of qubits [18]. In less idealized leakage models, leakage
errors do not correspond to simple erasures since they may
remain undetected or are only imprecisely located. Leakage of
this form has been studied for a quantum repetition code [19]
and for specific types of gates applied to superconducting
qubits [20], [21]. Despite this work, the impact of leakage on
the accuracy threshold of topological codes remains unclear. To
address this problem, we systematically study several leakage
reducing circuits and develop a new syndrome processing
strategy that further enhances the benefits of these circuits.

II. TORIC CODE

The toric code [1] is the prototypical example of topologi-
cal stabilizer codes. It is defined on a d by d square array where
d is the code distance. The left-right and top-bottom boundaries
of the array are associated. Vertices of the array are connected
to form a graph where each of the n edges carries a physical
qubit, called a code or data qubit. Each vertex and each face
carries a qubit used for error-correction, called a syndrome
or ancilla qubit (see Fig. 1a). The stabilizer S of the code is
generated by a set of check operators {Av} and {Bf} that
belong to the n-qubit Pauli group and are attached to each
vertex v and face f of the graph. These operators are tensor
products of single qubit Pauli operators X and Z. The vertex
(or star) operators Av =

⊗
ε∈N(v)Xε are X-type checks that

apply an X to the qubits on the four edges N(v) incident on
vertex v. The face (or plaquette) operators Bf =

⊗
ε∈N(f) Zε

are Z-type checks that apply a Z to the qubits on the four edges
N(f) on the boundary of face f . The toric code encodes a pair
of logical qubits. Representatives for each class of logical Pauli
X and Z operators are shown in Fig. 1a.

The check operators are measured simultaneously [3] using
circuits shown in Fig. 1b and Fig. 1c. In the first step, all
plaquette ancillas are prepared in the |0〉 state and all site
ancillas in the |+〉 state. In the next four steps, CNOT gates
act between each ancilla and the data qubit above, left, right,
and below the ancilla, in that order. This corresponds to the
gate order used in [7], [8]. Finally, the plaquette ancillas are
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Fig. 1. (a) The toric code has a natural two-dimensional layout on the surface of a torus. Qubits function as either data qubits, used to store the encoded
quantum state, or ancilla qubits, used to measure check operators (stabilizers) of the quantum code. Z-type check operators associate to faces (plaquettes) and
X-type check operators associate to vertices (stars). Each check operator involves four data qubits and is measured using an ancilla qubit. The torus encodes
a pair of qubits whose representative logical Pauli operators X1, Z1, X2, and Z2 are shown. (b,c) These circuits measure (b) plaquette and (c) star operators
using four CNOT gates together with preparations and measurements. In each circuit, data qubits dD,R,L,U interact with an ancilla qubit az/x that is prepared
in the state |0〉 or |+〉 = 1√

2
(|0〉+ |1〉). This ancilla is then measured in the basis of eigenstates of Z or X, respectively.

measured in the Z eigenbasis and the star ancillas in the X
eigenbasis. These six steps constitute an error-correction cycle.
Since syndrome measurements may not be reliable, O(d)
error-correction cycles are performed to improve confidence
in the syndrome. A syndrome history consists of these O(d)
syndrome measurement outcomes each with 2d2 bits.

The corrective operation is determined by a decoding
algorithm that processes the syndrome history. The classic
approach [3] processes plaquette and star syndromes inde-
pendently to find bit and phase error corrections. A separate
decoding graph G = (V, E) is constructed [22] for the two
cases. The graph is built by translating the unit cell shown
in Fig. 2a. The edges E correspond to error events in the
error-correction circuits. The horizontal edges b and d represent
qubit errors, the vertical edge a represents measurement errors
and the diagonal edges c, e, and f represent correlated errors.
The weight of each edge approximates the negative logarithm
of the probability of the corresponding error. Each nontrivial
syndrome in the syndrome history introduces a defect in the
decoding graph. A corrective operation that is likely to succeed
is obtained by matching pairs of defects using the minimum
weight matching algorithm [23] and correcting the bit or phase
flip errors on chains of qubits between the matched pairs of
defects.

III. LEAKAGE ERRORS

Leakage errors occur because qubits are not idealized two-
level systems but instead occupy a larger physical Hilbert
space. Interactions with the system may populate states in
that larger physical space. Here we define a simple stochastic
leakage model that captures key aspects of leakage and yet
remains amenable to stabilizer simulation. An interested reader
may find justification of our choices in [24].

Our stochastic model assumes that each subsystem is a
3-level system (a qutrit). Our model can be simulated by
maintaining and propagating a label (I , X , Y , Z or L) for
each qubit, where “L” denotes that the qubit leaked. A key
benefit of our label-based model is that full-blown stabilizer
simulation is not needed for the study of fault-tolerant quantum
error-correction and it suffices to track the Pauli error for
each qubit. Discrete leakage events occur independently with

probability p↑ on each output qutrit of an ideal gate. There is a
relaxation process with probability p↓, analogous to amplitude
damping, that acts independently on each output qutrit of an
ideal gate. Another important aspect of our model concerns
two-qubit gates. If one of the interacting qubits is leaked, the
other qubit is depolarized. Noisy two-qubit gates are followed
by independent excitation and relaxation maps on each output
qutrit.

The model has parameters p (depolarizing error proba-
bility), q (syndrome measurement error probability, we set
q = p), p↑ (probability of excitation outside of the com-
putational space), and p↓ (probability of relaxation back to
the computational space). For convenience, we also define
the relative excitation rate r = p↑/p and relaxation rate
s = p↓/p. Elementary quantum gates behave as follows. Idle
qubits depolarize with probability p, where we apply one of
X , Y , or Z uniformly at random. They undergo free evolution
and do not leak. However, an idle leaked qubit may relax to
the computational space with probability p↓. State preparation
succeeds with probability 1−p, otherwise the orthogonal state
is prepared. With probability p↑ the prepared qubit leaks. If the
input qubit is in the computational space, measurements report
the incorrect outcome with probability q = p and are otherwise
correct. When the input qubit is leaked, we consider two
scenarios: either the measurement cannot distinguish higher
levels and reports “1”, or the measurement has a third outcome
“L”. Noisy CNOT gates suffer joint depolarizing noise with
probability p, where a non-identity two-qubit Pauli error occurs
uniformly at random. If one of the inputs to the CNOT is
leaked, the other non-leaked qubit is completely depolarized,
i.e. one of the 4 single-qubit Pauli operators is applied uni-
formly to the non-leaked qubit. Finally, each output qubit leaks
with probability p↑ and relaxes with probability p↓.

Unlike the model in [19], we assume that qubits reach
a steady state leakage distribution at the beginning of any
simulation, which more faithfully models conditions of a long
computation. Consider error-correction circuits in the standard
toric code (Fig. 1b and Fig. 1c). Unlike ancillas, data qubits are
never re-initialized, and therefore they gradually accumulate
leakage according to the transition probabilities p↑ and p↓ until
equilibrium is reached. It is easy to show from direct calcula-
tion of eigenstates of the transition matrix that the equilibrium



distribution for data qubits is given by peq ≈ 4p↑
4p↑+6p↓

where
the factor 4 is due to the four CNOT gates, and the factor
6 is due to the four CNOT s and two idle time steps. The
second eigenvalue of the transition matrix is (1−p↓)6(1−p↑)4,
so the non-equilibrium component for each qubit decays as
exp(−ζn) where ζ = −6 ln [(1− p↓)(1− p↑)]. This suggests
that starting from an equilibrium distribution is not overly
pessimistic. Under the reasonable assumption p↑ ≈ p↓, the
fraction of leaked data qubits reaches 40% at which point the
threshold is far exceeded and computation without employing
some leakage reduction technique is impossible.

IV. LEAKAGE REDUCTION

Leakage reduction is a process that converts leakage errors
into regular errors that can be corrected by quantum codes.
Prompt leakage reduction is desirable as a single leaked qubit
can cause many other errors (e.g., a leaked data qubit can
damage ancillas which then spread more errors to other data
qubits). A circuit that converts leakage on a single qubit
into a regular error is called a leakage reduction unit (LRU).
LRUs satisfy two properties [12]: (a) they apply identity to
unleaked inputs, and (b) they output some computational state
if the input is leaked. Fig. 3 shows an LRU based on one-bit
teleportation [25]. We use LRUs as building blocks to construct
several leakage suppressing circuits that we describe next. Our
discussion here omits some technical details that can be found
in [24].

A. Leakage Reduction without Leakage Detection

We build several circuits that represent a tradeoff between
circuit complexity and leakage reduction effectiveness. We list
circuits from the most complicated to the simplest one:

Full-LRU: appends a LRU after each gate occurrence in the
syndrome extraction circuit (as in [12]); see Fig 4a. Leakage
is removed immediately after each gate but many additional
gates and qubits are needed (16 additional gates in 4 LRUs
per data and ancilla qubit per cycle). No LRU is applied to
ancillas prior to measurements.
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Fig. 2. (a) The unit cell of the Standard decoding graph has six edges with
distinct weights corresponding to the probability of the underlying error. The
edges that appear are determined by the error-correction circuit. (b) The X
error decoding graph of the HL decoder for the Quick circuit. Upon leakage
detection at time t on the plaquette ancilla *, the weights of the depicted edges
are replaced by probability pi.
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Fig. 3. A leakage reduction unit (LRU) implemented by one-bit teleportation.
If the original qubit at the bottom is in the computational space, the data is
teleported to the new qubit at the top. If the original qubit is leaked, the new
qubit is depolarized but remains in the computational space.

Partial-LRU: uses LRUs only once per error correction cycle.
LRUs act on each data qubit while the ancillas are measured;
see Fig. 4b. This strategy removes leakage less frequently
but only uses 4 additional gates (in 1 LRU) per data qubit
per cycle. Ancillas have no LRUs as they are periodically
measured and reinitialized.

Quick: is a circuit that further reduces the frequency of leakage
reduction; see Fig. 4c. At the end of each cycle, each data
qubit is swapped with an ancilla. A similar construction in [21]
reduced leakage in a superconducting qubit model. We choose
to swap the ancilla with the data qubit dD immediately below
the ancilla. Three CNOT gates implement a SWAP and, due
to gate cancellation, there is only one additional CNOT gate
per data qubit compared to the standard circuit. Each physical
qubit is measured and reset every other cycle, so qubits do not
remain leaked for many cycles. A key benefit is simplicity and
no need for extra ancillas.

No LRU: is the standard circuit depicted in Fig. 1b, 1c. The
circuit is not suitable for error correction in the presence of
leakage but serves as a reference point.

The Standard decoder is an algorithm that processes syn-
dromes produced by leakage reducing circuits. For each circuit
we adjust the edge weights in the decoding graph (Fig. 2a) so
that the decoder based on minimum weight matching finds a
correction from among the most likely errors consistent with
the syndrome.

The prior probability of edge ε is p(ε) =
∑
j pj(ε) where

pj(ε) is the probability that a fault occurs at location j and
yields syndrome ∂{ε}. The sum is taken over all locations
in the circuit. For small error rates p(ε) approximates the
probability that ε carries an error. The edge weights are then
given by − log p(ε). Edge weights can be approximated by
counting single-location faults [8]. We list numeric values of
the edge weights in [24].

B. Heralded Leakage Reduction

So far we assumed that measurements cannot distinguish a
leaked qubit from a qubit in the state |1〉. We now assume that
measurements can produce a third outcome “L”. For simplicity
we also assume that “L” is output if and only if the measured
qubit is leaked. We modify the decoders to use this additional
information. This requires no change to the quantum circuits,
but leads to significantly improved error decoding.

The Heralded Leakage (HL) decoder ingests results from
3-outcome measurements. This is advantageous because leak-
age is likely to cause regular errors on specific locations
around the leaked qubit, and the decoder is then able to match
defects using correct prior probabilities in the space-time
neighborhood of the “L” event in the decoding graph. Such
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Fig. 4. (a) The Full-LRU circuit replaces each gate with the gate followed by LRUs on each output qubit. (b) In the partial-LRU scheme, we insert an LRU on
each data qubit at the end of each error-correction cycle. (c) The Quick scheme uses a circuit that is equivalent to those in Fig. 1. The final CNOT gate acting
on the ancilla and the dU data qubit has been replaced by a CNOT followed by a SWAP. This simplifies to a pair of CNOT gates.

events do not indicate exactly which gate suffered a leakage
fault, since “L” events can only be detected by measuring a
qubit, but the decoder learns that the qubit leaked at some
location between its initialization and measurement.

Conditioned on the observed “L” events, the HL decoder
generates a new decoding graph by modifying the Standard
decoding graph (shown in Fig. 2a). Suppose a set of these
events L occurs. We can construct a conditional decoding
graph GL whose edges ε again correspond to independent
faults and whose edge weights are computed from conditional
probabilities p(ε|L). These probabilities are computed simi-
larly as in Section IV-A. GL is not translation invariant and
contains additional edges not present in Fig. 2a. There will be
low-weight edges in GL associated to highly probable errors
on the qubits that interacted with leaked qubits. The added
edges and their weights are specific to each leakage reduction
circuit. Fig. 2b shows example of the additional edges added
to the X error decoding graph for the Quick circuit.

To compute the edge weights in the conditional decoding
graph, we proceed as follows, examining each “L” event
on qubit q independently. We consider each of the n fault
locations between and including q’s initialization and mea-
surement. The probability that q is leaked when interacting
at the i-th location is approximately i/n. An X and Z error
each occurs on the qubit that interacts with q at location i
with probability pi = i/2n. We consider each of these errors
separately, find the defect pair they cause, and modify the
weight of the edge connecting this defect pair.

V. SIMULATION RESULTS

We simulated the No LRU, Partial-LRU, Full-LRU, and
Quick leakage reduction strategies with the Standard and
HL decoder. Fault-tolerant error-correction at code distance
d requires O(d) cycles of syndrome measurements so we
simulate d cycles. Each qubit is initially assigned the L label
with probability equal to the equilibrium leakage rate for
that particular qubit. Results were generated by Monte Carlo
simulations repeated for at least 10, 000 iterations and at least
1, 000 failures for each configuration. We used about 30,000
CPU-hours on an IBM Blue Gene/Q supercomputer.

Fig. 5a explores the accuracy thresholds for the Standard
and HL decoders as a function of the amount of leakage (the
relative excitation rate r). The plot was obtained by recording
the failure rates for code distance d = 7 and d = 9 and by

varying r in increments of 0.1 and p in increments of 0.01%.
We chose a relative relaxation rate s = 1. For each parameter
choice we found the crossover of the failure rates for the two
code distances, which approximates the threshold.

Fig. 5a shows that in the regime with no leakage (r = 0),
simpler syndrome extraction circuits have higher thresholds.
For example, the No LRU circuit has a threshold of about
0.70% whereas the Full-LRU circuit has a threshold of about
0.22%. The Quick and Partial-LRU circuits give an almost
identical threshold. The Quick circuit benefits from having
fewer gates and qubits, whereas the Partial-LRU benefits from
more frequent qubit reinitializations and therefore more effec-
tive leakage suppression. Finally, the HL decoder significantly
improves the threshold compared to the Standard decoder.

To understand the decrease of the threshold with increasing
leakage in Fig. 5a we consider an idealized scenario where all
leakage errors are immediately corrected. Leaked qubits are
replaced with a depolarized qubit, causing error X , Y , Z,
or I , which is equivalent to a regular error with probability
β = 3/4. Suppose that physical errors occur at an effective
rate p̃ = (1 + βr)p where the first term is due to regular
depolarizing errors and the second one due to leakage. After
some algebra we can show that the threshold is approximately
α

1+βr where α is a constant equal to the numeric value of
the threshold without leakage. We plot the threshold of the
“idealized decoder” in Fig. 5a by assuming β = 3/4 and
choosing α such that we intersect the threshold of the Quick
circuit at r = 0. We expect that any leakage reducing circuit
will need at least one additional physical gate like the Quick
circuit. A Standard decoder’s threshold will not exceed that
of the idealized one, but a decoder that uses results from 3-
outcome measurements could.

We observed [24] that the thresholds do not depend much
on the relaxation rate s, likely because relaxation is much
slower than the leakage reduction occurring in the circuits.

To study the effectiveness of the decoders, we chose r =
s = 1 and recorded the decoding failure rates as a function of
p. Recall that p↑ = rp and p↓ = sp. In Fig. 5b we show failure
rates for the Full-LRU circuit and the Quick circuit with the
Standard and HL Decoder. The thresholds occur at the crossing
points of each set of curves. When p is well below threshold,
the success rate of the Full-LRU circuit improves faster than
for the Quick circuit with Standard decoder, which suggests
that for low enough physical error rates the Full-LRU circuit
will perform best.
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Fig. 5. (a) Summary of thresholds for the HL and Standard decoders. The HL decoder offers a substantially improved threshold. (b) Comparisons of decoding
failure probabilities for the Full-LRU circuit and the Quick circuit with the Standard and HL decoder.

VI. CONCLUSION

In this work we defined a simple noise model that captures
key aspects of leakage and is tractable to simulate. We used
the model to systematically survey the performance of various
circuits that suppress leakage in the toric code. We considered
a scenario where measurements can distinguish leaked and
non-leaked qubits, and another in which they cannot. For each
of these cases we designed an optimized decoding algorithm.
Our simulation results show that the small, simple circuits
effectively suppress leakage and reduce the accuracy threshold
by less than a factor of 2 with our decoder that uses information
about leakage detection events. We also present evidence that
large complex circuits that reduce leakage after every gate may
achieve the lowest logical error rates for physical error rates
below 2×10−4 despite having low accuracy threshold. Future
work could explore logical error rates of these circuits at higher
distances and at error rates far below threshold, perhaps by
applying the splitting method [22].
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