
TCP MaxNet – Implementation and Experiments on
the WAN in Lab

Martin Suchara, Ryan Witt, Bartek Wydrowski

California Institute of Technology

Pasadena, CA 91125, U.S.A.

{suchara, witt, bartek} @caltech.edu

Abstract— We describe implementation and performance of
TCP MaxNet, a new protocol which uses a multi-bit explicit
signaling approach to congestion control. The MaxNet sender al-
gorithm operates by adjusting its congestion window in response
to explicit feedback from the most congested link encountered in
the network. This scheme has numerous theoretical advantages
over the ubiquitous practice of adjusting the congestion window
based on the total amount of congestion in the path. We
implement the MaxNet control scheme on top of the existing
Linux TCP/IP protocol framework and evaluate its performance
in the high bandwidth-delay environment of the WAN in Lab. Our
experiments show that MaxNet possesses the desirable properties
that theory predicts: very short router queues and fair sharing
among multiple flows of different RTTs.

I. INTRODUCTION

Congestion avoidance has been a central topic in computer

network design over the past two decades. The most widely

used congestion control algorithm today, TCP Reno, employs

an Additive Increase Multiplicative Decrease (AIMD) scheme

that increases its congestion window by one whenever a

packet is successfully transmitted, and cuts the window in half

whenever a packet is lost. While TCP Reno achieves excellent

performance in low-speed, low-loss networks, it scales poorly

as the bandwidth-delay products of networks increase. One

reason for this is that packet sizes have stayed largely the same

while hardware transmissions speeds have grown. The packet-

wise Additive Increase means that it takes an increasingly

long time to reach maximum throughput. When coupled with

Multiplicative Decrease, which cuts the transmission rate in

half when congestion loss is encountered, the slow ramp-

up behavior severely limits full utilization of bandwidth. In

general, using loss as a congestion signal is problematic.

Though packet loss is a typical result of overflowing buffers

on congested links, it cannot be used to prevent congestion

before it occurs because the signal reaches the sender too

late. Moreover, wireless links have inherent losses which

introduce noise into the congestion signal and make AIMD

even more costly. Consequently, the careful design of a new

TCP protocol that gracefully scales with the capabilities of

computer networks is very important. We provide the first

implementation and experimental evaluation of the MaxNet

congestion control scheme [1] [2] [3] which we call TCP

MaxNet, adding it to a growing number of efforts such as

FAST TCP [4] [5] and XCP [6] [7] that attempt to achieve

this goal.

A number of intriguing theoretical properties of the MaxNet

congestion control scheme have motivated our investigation:

Scalability to networks with arbitrary bandwidth-delay prod-

ucts [1], max-min fair sharing of bandwidth between flows

[2], short router queues and quick convergence after network

state changes [3]. Like FAST TCP and XCP, MaxNet disasso-

ciates itself from the AIMD scheme that plagues the current

generation of TCPs, and like XCP, MaxNet relies on explicit

congestion signals from the routers to tell end hosts how

to adjust their transmission rates. Explicit signaling schemes

are vastly superior to AIMD in several ways [6] since they

allow a sender to react to congestion well before any negative

symptoms such as packet loss or prolonged RTT appear.

Because of this early notification and reaction, an explicit

signaling protocol is able to keep the average router queue

length close to zero, which is something FAST is not able

to do, since it relies on change in delay (and thus positive

queues) to detect congestion. Additionally, the idea of explicit

congestion signaling could be extended to allow the sender to

nearly immediately (after one RTT) begin sending at a rate

close to the spare capacity in the network.

TCP MaxNet differs significantly from other explicit sig-

naling protocols such as ECN marking and XCP. Both XCP

and TCP MaxNet have many more bits in their feedback

signal than ECN, and Wydrowski, et. al. show in [3] that

MaxNet has faster convergence properties than ECN marking.

MaxNet also appears to have several advantages over XCP.

The simplicity of the MaxNet control scheme lends itself

to an easier implementation. Whereas XCP requires a fair

amount of computation at the routers to operate properly,

including code to deal with fractional congestion feedback

[7], a MaxNet router requires few instructions which reduces

delay and allows implementation on a wider variety of network

devices. In addition, our implementation of MaxNet requires

less control data and thus less network overhead than XCP.

The aim of this paper is to report on our successful

implementation of TCP MaxNet and provide experimental

measurements confirming the conclusions provided by the

theoretical analyses. In order to effectively evaluate TCP

MaxNet’s performance versus classic TCPs, we need a net-

work environment capable of providing the high bandwidth-

delay product links on which differences between MaxNet and

AIMD schemes appear. Such an environment was provided by

the newly constructed WAN in Lab [8], a standalone network

laboratory environment comprising an array of routers, servers

and long-distance high-speed optical links. In Section II, we

present a high level overview the MaxNet congestion control

scheme and describe how the various parts of the protocol

interact. In Section III, we describe our implementation of

MaxNet on top of the Linux TCP/IP protocol stack and discuss

the challenges we faced working within the limitations of the

Linux kernel. In Section IV, we describe the performance

measurements collected from our experiments on the WAN

in Lab and provide directions for further research. Section V

summarizes our results.

II. MAXNET ARCHITECTURE

Congestion control in MaxNet comprises two principal

components: an Active Queue Management (AQM) algorithm

which resides at each router, and a source algorithm which

controls transmission rates and resides at the sender and

receiver. This section describes both algorithms and explains

how they interact.

A. AQM Algorithm

Routers use the AQM algorithm to calculate congestion

level for each of their outbound links. The congestion level

of a particular link is indicated by the integrator function

Price(t + 1) = Price(t) +
1
C

(X(t)− μC), (1)

where C is the output capacity of the link in bps, μ is

the percentage utilization of this link when we consider it

“full” and decide to back off from increasing our transmission

rate, and X(t) denotes the speed at which packets are being

enqueued at this link in bps. Price(t) is a very good indicator

of congestion on the link at time t. A closer inspection of

(1) reveals that Price(t) corresponds to this link’s expected

queue length in seconds at time t. Price(0) is defined to be

zero since the queue is initially empty. The value calculated

in this equation is later fed back to the sender and if it is

the maximum of all such values on the path, it is used to

calculate the sender’s congestion window. Conveniently, this

router algorithm is fully distributed across the routers and no

per flow state is needed.

Pn

Source Link1

Max
Function

DestinationLink2 Linkn

P1 P2max{P1,...,Pn}

Fig. 1. Conceptual congestion control scheme of MaxNet. The level of
congestion at each link, P1, P2, · · · , Pn, is fed back to the sender, which
then uses the max of the values to adjust its congestion window size.

1) Estimate the target window size:

η ← η + p1
cwnd - p2×price

baseRTT × interval

estWnd ← p3 × exp
(
η − p4×price

baseRTT

)

2) Set the congestion window:

tmp ← cwnd - estWnd
if tmp > maxDecrement then
cwnd ← cwnd - maxDecrement

else if tmp < -maxIncrement then
cwnd ← cwnd + maxIncrement

else
cwnd ← estWnd

end if

Variables and parameters:
η state variable

price price received in the most recent packet

estWnd calculated target window size

cwnd window size that is used by the sender

p1, p2, p3, p4 parameters

interval integration period

Fig. 2. Pseudocode of the source algorithm. The calculated window size
estWnd is inversely related to the congestion feedback Price received in ACK
packets. The window size of the sender, however, is not allowed to increase
or decrease by more than maxIncrement and maxDecrement number of
packets respectively, so that we avoid overreacting to the signal.

B. Source Algorithm

Senders use the source algorithm to adjust their congestion

window size in response to the feedback from the routers

calculated by (1). While a vast majority of TCP protocols

adjust its sending rate based on the sum of the congestion

levels on the end-to-end path, MaxNet only uses the conges-

tion level from the most severely congested bottleneck (i.e. the

maximum of the prices, thus the term MaxNet) as described

in Fig. 1. The window control algorithm we choose is given in

Fig. 2. The target congestion window is calculated in the first

step. The true window size of the sender is set in the second

step. It is generally equal to the window size calculated in

the first step but it is not allowed to increase or decrease by

more than maxIncrement and maxDecrement number of

packets respectively. Parameters p1 and p3 determine the rate

of convergence, the higher the value the faster the convergence

rate. Similarly, parameters p2 and p4 determine the severity

of reaction to the congestion signal. Proper tuning of the

constants is essential to achieve convergence and scalable per-

formance. The source algorithm uses the control law proposed

in [9] and corresponds to a particular choice of utility function

of the general MaxNet framework in [1] [2] [3]. Wydrowski

et. al. prove that this framework guarantees max-min fairness

and stability for networks of arbitrary topology, delay, loss,

number of sources and capacities.

III. IMPLEMENTATION

We choose to implement the MaxNet control scheme on

top of Linux’s existing TCP/IP framework. Working with

such a robust and mature codebase significantly speeds up

the development cycle from what it would have been had we

chosen to develop a new protocol from scratch. Because we

implement on top of TCP, we refer to our implementation

as TCP MaxNet, though the MaxNet congestion control

scheme could ostensibly be applied to any transport protocol

concerned with congestion control, or even developed as a

standalone protocol.

A. Communication Between the AQM and Source Algorithms

We suggest introducing a new TCP Option and use 6 bytes

in each packet header to carry information about the level of

congestion on the end-to-end path. The option format we use is

depicted in Fig. 3. The purpose of the first byte is to advertise

that this is TCP MaxNet option and the second byte advertises

the length of the remaining fields. It is very important for

performance of the protocol that the size of our option does

not exceed 8 bytes (including the 2 leading bytes), as we will

later explain, and thus we are left with 6 bytes divided between

price and echo field.

Routers compare the price field in each packet that is

dequeued with the price calculated by their AQM algorithm. If

the calculated price exceeds the price advertised in the packet,

the calculated value is written in the price field. The option is

subsequently processed at the destination, price is written into

the echo field and sent back to the source in an ACK. Once

the source receives the ACK it reads the echo value and uses it

to adjust its window size. The code of the sender and receiver

is identical, and our design allows duplex TCP connections.

B. Implementation of the AQM Algorithm

The router code is implemented as iproute2 dynamically

loadable module for Linux. The module is loaded using the

tc program as an interface to the kernel and it accepts

several parameters. capacity is the link capacity C from

(1) in Kbps, mu is the efficiency parameter μ from (1) and

frequency is the time interval between price calculations in

microseconds. For practical purposes it is not desirable to set

the frequency too small. Too small a time interval makes the

calculation sensitive to bursts. Moreover, less frequent price

calculation, say every 3 ms will not jeopardize the convergence

properties of the algorithm since the time required to signal

the price to the sender is typically much higher than 3 ms. The

opt optsize

42 6 echo price
(1 byte) (1 byte) (3 bytes) (3 bytes)

Fig. 3. MaxNet option format.

module calculates Price on a specified link according to (1).

However, since price calculation is called from dequeue(), the

code might not be called every frequency microseconds.

We solved this problem by checking the elapsed time dt in

dequeue() and performing the following calculation if dt >
frequency:

Price(t + dt) = Price(t) +
X(t)
C
− μdt. (2)

Since the module is implemented as part of the Linux

kernel, the code has to be developed to work in an envi-

ronment without native floating point support. We perform

all calculations with sufficient accuracy by first multiplying

all parameters by an appropriate constant to convert the

values into a convenient range. For example, to calculate

μdt, where μ = 0.96 and dt = 10, 000, μ is converted to

(96∗1024/100) = 983. The final result Cμ is divided by 1024

before next use, which can be done without loss of accuracy

if the typical value is much larger than 1024.

When the router changes the price value in the packet, the

checksum of the packet has to be updated. We implement an

incremental procedure that accepts the old checksum, old price

and new price value and outputs the new checksum [10].

C. Implementation of the Source Algorithm

The client side modification involves integrating the new

TCP protocol into the kernel TCP code. We introduce a system

control variable that allows us to switch the algorithm on and

off in runtime. Parameters p1 through p4 from Fig. 2 were

also implemented as system control variables, allowing us to

change the values promptly. Per connection variables such as η
and estWnd from Fig. 2 are retained between the calls of an

algorithm that calculates the congestion window in a control

structure located in struct tcp sock.

The main part of the code calculates new window size

according to the algorithm from Fig. 2. The calculation is

performed after receiving a new ACK. The calculated window

size is subsequently saved in struct maxnet. Whenever the

standard TCP algorithm changes the value of the congestion

window, TCP MaxNet overrides the window size with its

calculated value. The only exception is a timeout when we

follow the standard TCP behavior. It is important to notice

that the calculated window is enforced after loss, whereas

the standard Linux TCP implementation decreases the window

size. The decrease is not necessary for TCP MaxNet, because

it decreases its sending rate as soon as it receives positive price

from the link and thus it does not experience congestion based

loss.

The window size calculation requires evaluation of an

exponential function with a real parameter in the Linux kernel,

where only integer calculations are available. We solve this

problem by proper scaling of the variables, and by hard-coding

a lookup table of a finite number of values of the exponential.

The lookup table, consisting of several hundred records, must

be declared as a global variable in order to save limited stack

space.

The maximum length of the TCP Options in the Linux

kernel is limited to 60 bytes. 20 bytes are used for the TCP

header, 12 bytes are used for the timestamp option and 28

bytes remain for selective acknowledgements (SACKs) and

TCP MaxNet options. In standard TCP implementations, one

can have up to 3 SACK blocks per packet header. They use

4 bytes plus 8 bytes per block, requiring up to 28 bytes and

not leaving any space for TCP MaxNet options. Therefore, we

are forced to change the standard SACK implementation and

allow at most 2 blocks per SACK. This leaves 8 bytes for TCP

MaxNet options. It is important that the MaxNet option does

not use up more than 8 bytes. Availability of at least 2 blocks

per SACK is crucial for the protocol’s performance under loss

[11]. In Section IV we will show that TCP MaxNet achieves

excellent performance under loss even with only 2 blocks per

SACK.

IV. PERFORMANCE

Performance evaluation of TCP MaxNet and comparison

of performance to two other protocols, BIC TCP and FAST

TCP, has been conducted on a WAN network using WAN in

Lab [8]. WAN in Lab is a wide area network consisting of

an array of reconfigureble routers, servers and clients. The

backbone of the network is connected by two 1600 km OC-

48 links introducing a large amount of real propagation delay.

Our experimental setup consisting of two Linux routers and

four Linux end hosts is depicted in Fig. 4. TCP MaxNet router

code is installed on the routers (labled Bottleneck Router 1 and

Bottleneck Router 2) and the client side code is installed on

the end hosts. In order to limit the throughput at the Bottleneck

Router 1 and Bottleneck Router 2 and to control the buffer size

we use a token bucket filter. The bottleneck throughput in our

experiments is limited to 10 Mbps. Since our topology allows

us to introduce 14 ms and 28 ms one way propagation delay,

we limit the buffer size in the router to be 30 KB. This is

slightly less than the bandwidth delay product for both paths.

Appropriate choice of buffer size is important. Loss based

algorithms, such as BIC TCP, need to fill the buffers before

decreasing their sending rate as a reaction to loss, and thus

TCP MaxNet could gain an unfair advantage in an experiment

with unrealistically large buffers.

The parameters of the XCP router code, described in detail

in previous section, are chosen as follows: capacity =
10, 000 Kbps, mu = 0.96, frequency = 10, 000 ms. The

link speed of 10 Mbps at the routers requires capacity =
10, 000 Kbps and mu = 0.96 implies 96% target utilization of

the link. While choice of a higher value of mu tends to give

better performance, it causes unstability in some cases because

the algorithm overestimates performance of the link. The

parameters of TCP MaxNet client code are chosen as follows:

p1 = 6, p2 = 1, p3 = 2, p4 = 15, maxIncrement = 2,

maxDecrement = 20. Choice of these parameters is dictated

by our requirements for a fast convergence to the target

window size for transmissions at various speeds as well as

by the requirement of stability of the algorithm.

Traffic on the network is generated in our experiments

by netperf. We compare performance of TCP MaxNet to

performance of BIC TCP, a loss based congestion avoidance

algorithm which is now the default for Linux, and FAST TCP,

a delay based algorithm.

8x200km OC-48 2.5Gbps 8x200km OC-48 2.5Gbps

`

Host C

`

Host A

`

Host B

`

Listening

server

Bottleneck

Router 1
Bottleneck

Router 2

14 ms delay 14 ms delay

10 Mbit/sec
10 Mbit/sec

Optical RouterOptical Router Optical RouterOptical Router

Fig. 4. Wan in Lab architecture. End hosts connected through Linux routers
with 14 ms and 28 ms of one way propagation delay.

A. Convergence and RTT

In the first experiment, we observe the convergence and

stability of the sending rate of the sender. Traffic is sent from

Host C to the listening server over a link with 14 ms one

way propagation delay. During the experiment, immediate raw

throughput of the protocol and RTT is recorded after arrival of

each new acknowledgement. Raw throughput is calculated as

number of packets in flight divided by the RTT. Average values

of raw throughput in one second increments are depicted in

Fig. 5 and average values of RTT in 25 ms increments are

depicted in Fig. 6. While TCP MaxNet achieves slightly lower

raw throughput than the other protocols, the convergence rate

to the target speed as well as stability of the throughput is

comparable for all three protocols. The raw throughput of the

other protocols may be slightly higher because it also includes

packets that are dropped in the routers. This is a very rare

event when TCP MaxNet is used. TCP MaxNet is able to

transfer data with much lower latency than the other protocols.

BIC TCP, as well as all other loss based congestion protocols,

increase the sending rate untill all the buffers along the end-

to-end path are filled with data and overflow. Therefore, loss

based algorithms experience very high latency and the RTT of

BIC TCP exceeded 70 ms, twice the latency of TCP MaxNet.

As follows from Fig. 6, FAST TCP experiences lower latency

because it does not need to fill the buffer at the router in order

to fully utilize the capacity of the link. However, the latency of

FAST TCP is still much higher than that of TCP MaxNet. TCP

MaxNet is able to achieve very low average latency of 29 ms

on a link with one way propagation delay 14 ms because the

explicit signal from the router causes the sender to decrease its

window size whenever queue starts to build up in the router,

thus preventing queue buildup.

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20

th
ro

ug
hp

ut
 (

M
bi

t/s
ec

)

time (sec)

Throughput on a 10 Mbit/sec link

BIC
FAST

MaxNet

Fig. 5. Throughput of TCP MaxNet, FAST TCP and BIC TCP converging
to 10 Mbps, the bottleneck capacity.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

R
T

T
 (

m
s)

time (sec)

RTT of a single flow on a 10 Mbits/sec link

BIC
FAST

MaxNet

Fig. 6. RTTs of TCP MaxNet are much lower than RTTs of FAST TCP or
BIC TCP indicating short queues in the routers.

B. Fairness

One objective of TCP protocols is to share common bottle-

neck bandwidth fairly under various circumstances. However,

stability requirements of commonly used congestion avoidance

algorithms impose dependence of the target throughput on

RTT. Therefore, it is very common for TCP protocols not to

share bottleneck capacity fairly among flows with RTTs that

differ. We provide two experiments that assess fair sharing -

one for flows with identical RTTs and the other for flows with

different RTTs. Our results show that TCP MaxNet is able to

share common bottleneck capacity fairly in both cases.

Each of the leftmost three plots in Fig. 7 shows the transfer

rates of four different TCP flows sharing a common bottleneck.

All the four flows in each experiment have identical RTT

and use the link between Host C and the listening server

with has 14 ms one way propagation delay. Results for TCP

MaxNet, FAST TCP and BIC TCP are shown respectively.

We conclude that all the three TCP algorithms are able

to share the bottleneck speed fairly in this case. Also the

transmission speed converges quickly to the target speed for

all the protocols, even though FAST TCP and BIC TCP tend

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 5 10 15 20

M
ax

N
et

 T
hr

ou
gh

pu
t

flow A
flow B
flow C
flow D

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20

M
ax

N
et

 R
T

T

flow A
flow B
flow C
flow D

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 5 10 15 20

F
A

S
T

 T
hr

ou
gh

pu
t

flow A
flow B
flow C
flow D

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20

F
A

S
T

 R
T

T

flow A
flow B
flow C
flow D

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 5 10 15 20

B
IC

 T
hr

ou
gh

pu
t

flow A
flow B
flow C
flow D

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20

B
IC

 R
T

T

flow A
flow B
flow C
flow D

Fig. 7. Multiple TCP flows with identical RTTs share common bottleneck
capacity fairly. The average throughput for each of the TCP MaxNet flows
ranged between 2.27 Mbps and 2.31 Mbps.

to overestimate the target capacity shortly after the start of

the transmission, resulting in heavy loss of packets at the

router. The raw throughputs of FAST TCP and BIC TCP

exceed 10 Mbps for a brief period of time after the start

of the transmissions because raw throughput depends on the

number of packets in flight and the immediate value does not

reflect packets that may be dropped by the router. RTT for the

same experiment is depicted in the next three plots in Fig. 7.

Similarly as in the experiment from section A, TCP MaxNet

achieves much lower latency than the other protocols. While

the average RTT for TCP MaxNet remains at about 29 ms,

the RTT of FAST TCP and BIC TCP exceds 200 ms and 250

ms respectively.

Sharing of bandwidth among flows with differing RTTs

is depicted in Fig. 8. The leftmost three plots each show

throughput of two flows on links with round trip latency 57

and 29 ms. The rightmost three plots in Figure 8 show RTT

values corresponding to the two flows. The flows are initiated

between Host A, Host C and the listening server. While TCP

MaxNet shares the bottleneck speed equally, both TCP Maxnet

and BIC TCP prefer the flow with lower RTT. The right hand

half of Fig. 8 shows RTTs for the experiment, and, once again,

TCP MaxNet is able to achieve very low latency by keeping

the buffers in both routers used in this experiment empty.

C. Performance under Loss

Performance of TCP MaxNet under loss is evaluated by

measuring throughput of a TCP flow between host C and the

listening server. Loss is introduced by netem in the router

on all its interfaces. Average throughput of the protocol for

a flow with duration 10 seconds and with loss at the router

ranging from 1-5% is summarized in Table I. TCP MaxNet

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 5 10 15 20

M
ax

N
et

 T
hr

ou
gh

pu
t

flow A (57 ms)
flow B (29 ms)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 5 10 15 20

M
ax

N
et

 R
T

T

flow A (57 ms)
flow B (29 ms)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 5 10 15 20

F
A

S
T

 T
hr

ou
gh

pu
t

flow A (57 ms)
flow B (29 ms)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 5 10 15 20

F
A

S
T

 R
T

T

flow A (57 ms)
flow B (29 ms)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 5 10 15 20

B
IC

 T
hr

ou
gh

pu
t

flow A (57 ms)
flow B (29 ms)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 5 10 15 20

B
IC

 R
T

T

flow A (57 ms)
flow B (29 ms)

Fig. 8. Only TCP MaxNet was able to share common bottleneck fairly for
flows on links with different porpagation delays. The average throughput of
the TCP MaxNet flows was 4.40 Mbps and 4.68 Mbps respectively.

outperforms the other protocols in losy environments because

both FAST TCP and BIC TCP assume that all loss is result

of congestion, thus decreasing the sending rate more than

necessary when non-congestion based loss is introduced.

loss rate MaxNet FAST BIC
0% 8.89 9.36 9.47
1% 8.58 5.56 3.51
2% 8.25 4.75 2.36
3% 7.83 4.13 1.81
4% 7.65 3.07 1.39
5% 6.85 3.08 1.21

TABLE I

BEHAVIOR IN LOSSY CONDITIONS - THROUGHPUT IN MBPS.

D. Directions for Further Research

In the future, it would be desirable to compare performance

of MaxNet and XCP. XCP is of special interest to us because

of its similarity to MaxNet and its exceptional performance in

practice [7]. In light of the theoretical suggestions that MaxNet

achieves universal max-min fairness and recent research that

suggests XCP does not share bandwidth fairly in certain

network topologies [12], it would be of interest to deter-

mine if MaxNet can sustain its advantage when deployed in

large computer networks. More research and testing, however,

are needed in relation to the deployment of the algorithm,

particularly in mixed environments. The greatest obstacle to

performing wide scale testing of the algorithm is the fact that

it requires router modifications in addition to modifications of

the end-hosts.

V. CONCLUSION

We are the first to provide working implementation of TCP

MaxNet and to report on performance of the protocol. Our

contribution is twofold. First we provide solutions to various

challenges one faces when implementing the protocol, such as

a method for calculating exponential with sufficient accuracy

in the Linux kernel, and we point out important changes in

the Linux kernel that are needed to achieve good perfor-

mance under various conditions. Our second contribution is

performance evaluation of the protocol. Our results confirm

previous theoretical predictions and show that TCP MaxNet

is for many reasons an attractive protocol. We demonstrate that

TCP MaxNet is capable of fair sharing of bottleneck capacity

even when the propagation delays of the competing flows

vary. Moreover, we demonstrate that TCP MaxNet achieves

extraordinary performance in lossy environment. Finally, we

show that MaxNet TCP flows have low latency and result in

short router queue sizes.

ACKNOWLEDGMENT

We would like to acknowledge support of the Networking

Laboratory at the California Institute of Technology. We also

would like to acknowledge George Lee, who helped us to set

up experiments on the WAN in Lab. This is part of the FAST

and WAN in Lab project at Caltech supported by NSF (EIA- -,Cisco,

0303620), Cisco ARO, and AFOSR.

REFERENCES

[1] B. Wydrowski, L. L. H. Andrew, and M. Zuckerman, “MaxNet: A
congestion control architecture for scalable networks,” IEEE Commun.
Lett., vol. 7, pp. 511–513, Oct. 2003.

[2] B. Wydrowski and M. Zuckerman, “MaxNet: A congestion control
architecture for MaxMin fairness,” IEEE Commun. Lett., vol. 6, pp. 512–
514, Nov. 2002.

[3] B. Wydrowski, L. L. H. Andrew, and I. M. Y. Mareels, “MaxNet: Faster
flow control convergence,” 2005, unpublished.

[4] C. Jin, D. X. Wei, and S. H. Low, “TCP FAST: motivation, architecture,
algorithms, performance,” in Proceedings of IEEE Infocom, Mar. 2004.

[5] C. Jin, D. Wei, S. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A.
Cottrell, J. C. Doyle, W. Feng, O. Martin, H. Newman, F. Paganini,
S. Ravot, and S. Singh, “FAST TCP: From theory to experiments,” IEEE
Network, vol. 19, pp. 4–11, Feb. 2005.

[6] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in Proceedings of the 2002 con-
ference on Applications, technologies, architectures, and protocols for
computer communications, Pittsburgh, PA, 2002.

[7] Y. Zhang and T. Henderson, “An implementation and experimental
study of the eXplicit Control Protocol (XCP),” in Proceedings of IEEE
Infocom, Miami, Florida, Mar. 2005.

[8] “WAN in Lab,” 2005. [Online]. Available: http://wil.cs.caltech.edu/
[9] F. Paganini, Z. Wang, J. C. Doyle, and S. H. Low, “Congestion

control for high performance, stability and fairness in general networks,”
IEEE/ACM Trans. Networking, vol. 13, no. 1, pp. 43–56, Feb. 2005.

[10] A. Rijsinghani, “Computation of the Internet Checksum via Incremental
Update,” RFC 1624 (Informational), May 1994. [Online]. Available:
http://www.ietf.org/rfc/rfc1624.txt

[11] P. Sarolahti and A. Kuznetsov, “Congestion control in linux tcp,” in
Proceedings of 2002 USENIX Annual Technical Conference, Monterey,
CA, June 2002, pp. 49–62.

[12] S. Low, L. Andrew, and B. Wydrowski, “Understanding XCP: Equilib-
rium and fairness,” in Proceedings of IEEE Infocom, Miami, Florida,
Mar. 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

